$\text{TARIFA} = \text{Fc} \times (\text{LME} - \text{CR}) \times (\text{LP}) \times (1 - \frac{\text{PM}}{100}) - \text{CF}$
Donde:
$\text{TARIFA} = \frac{1}{\text{Fc}} \times (\text{LME} - \text{CR}) \times (\text{LC}) \times (1 - \frac{\text{PM}}{100}) - \text{CF}$
$\text{ESCALA} = \frac{1}{\text{Fc}} \times (\text{LME} - \text{CR})$
$\text{TARIFA} = \left[\frac{1}{\text{Fc}} \times (\text{LME} - \text{CR}) \times (\text{LC}) \times (1 - \frac{\text{PM}}{100}) - \text{CF}\right] \times \frac{\text{LM}}{\text{LC}} \times \frac{\text{REC}}{100} - \text{CB}$
$\text{ESCALA} = \left[\frac{1}{\text{Fc}} \times (\text{LME} - \text{CR}) \times (\text{LC}) \times (1 - \frac{\text{PM}}{100}) - \text{CF}\right] \times \frac{1}{\text{LC}} \times \frac{\text{REC}}{100}$
$\text{TARIFA} = \left[\text{Fc} \times (\text{LME} - \text{CR}) \times \frac{\text{LP}}{100} \times (1 - \frac{\text{PM}}{100}) - \text{CF}\right] \times \frac{\text{LM}}{\text{LP}} \times \frac{\text{REC}}{100} - \text{CL} - \text{CAC} - \text{CHA}$
$\text{ESCALA} = \left[\text{Fc} \times (\text{LME} - \text{CR}) \times \frac{\text{LP}}{100} \times (1 - \frac{\text{PM}}{100}) - \text{CF}\right] \times \frac{1}{\text{LP}} \times \frac{\text{REC}}{100} - \text{CAC} - \text{CHA}$